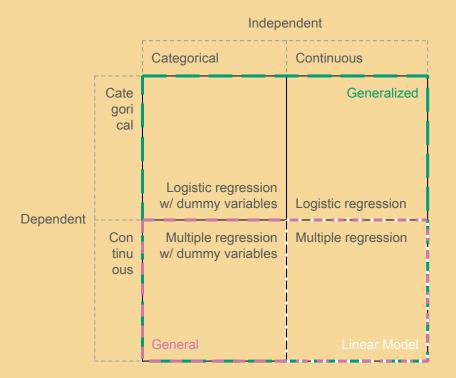
Multilevel & Longitudinal Analysis

ependent observations

Statistical Reasoning Lecture #5
Alexander Savi, 2025

Mehmetoglu & Mittner Ch. 12

Orange by <u>ljeamaka Anyene</u>



Independent data

Dependent data

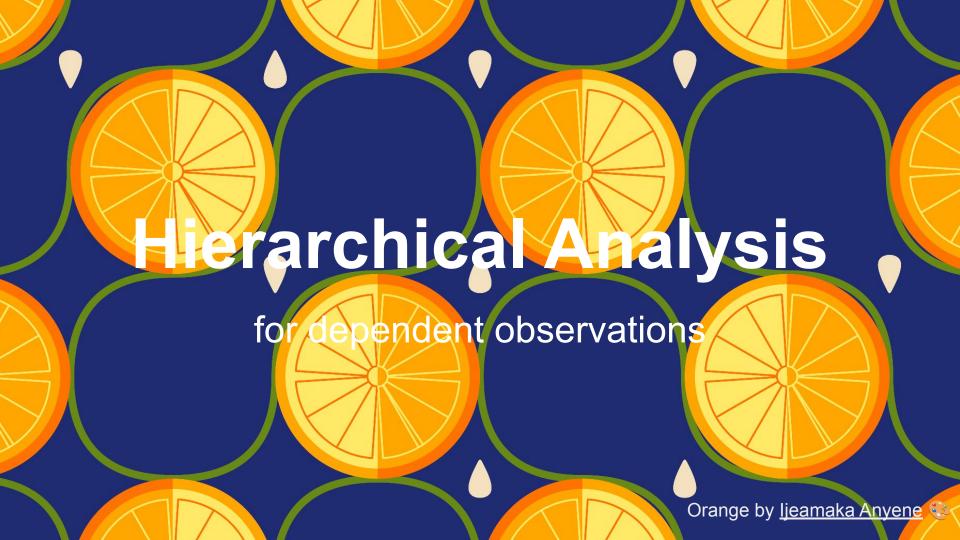
Topics

- 1 | Statistical reasoning with GLM
- 2 | Multiple linear regression
- 3 | Dummy-variable regression
- 4 | Logistic regression
- 5 | Multilevel and longitudinal analysis
 - 5.1 | Hierarchical analysis
 - 5.2 | A Polynomial regression
- 6 | Statistics superpowers
- 7 | Bayesian statistics

Examples

- Depression (longitudinal)
- Depression (longitudinal)
- Danceability (cross-sectional)

Learning goals



Wisdom of the crowd?

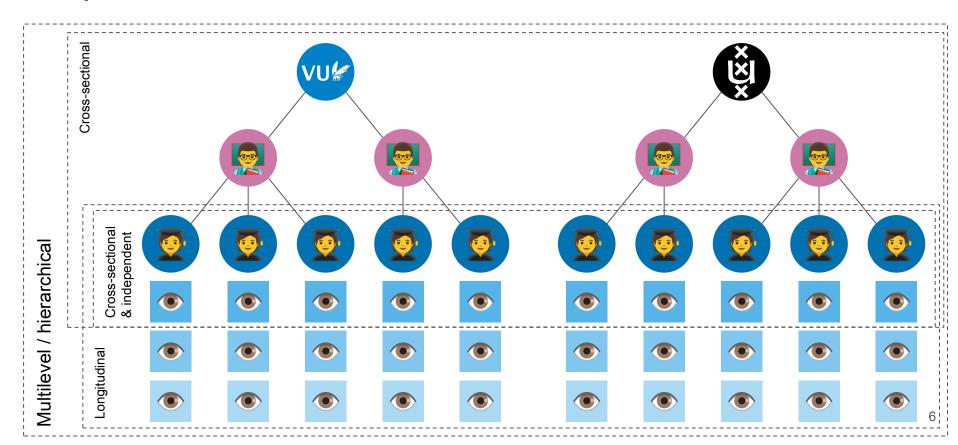
Now tall am I?

How old am I?

Social desirability bias

Anchoring effect

Dependent observations



Danceability

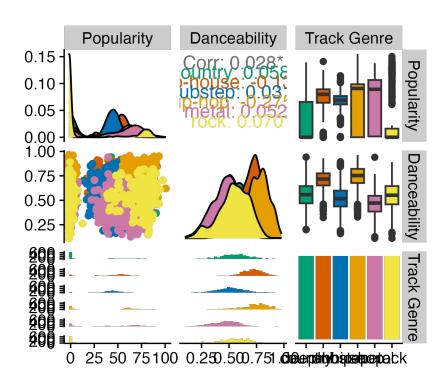
"Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable."

— Spotify

How are the danceability and popularity of tracks related?

■ Does a hierarchical model make sense?

Data

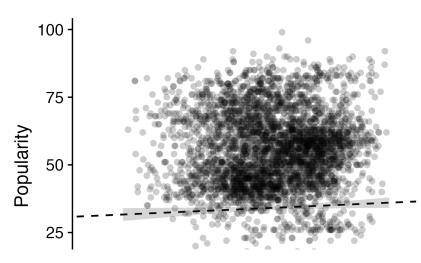


Complete pooling

Musical genres imprison the creativity of humankind. We should model it without such artificial limitations:

```
Call:
lm(formula = mod, data = spotify by genre)
Residuals:
    Min
             10 Median
                 8.325 24.205 64.727
-36.034 -33.353
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
               31.084
                           1.463 21.253
danceability
                5.134
                           2.404
                                  2.136
                                           0.0328 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 29.07 on 5998 degrees of freedom
Multiple R-squared: 0.0007598, Adjusted R-squared: 0.0005932
F-statistic: 4.561 on 1 and 5998 DF, p-value: 0.03275
```

```
mod <- popularity ~ danceability
fit <- lm(mod, data = spotify_by_genre)</pre>
```



Way to go, that's what we call complete pooling, or "naive regression". Naivety may fit you well, but it's **bad for the fit of the model**. What if the relation differs across genres?

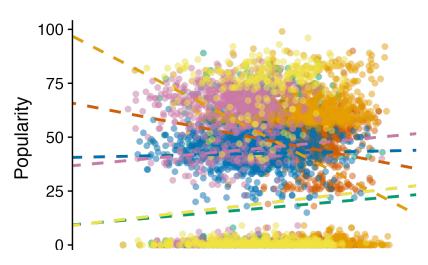
No pooling

You win, I'll fit a separate model for each genre. Or, equivalently, an interaction model where the slopes are allowed to vary:

```
track genre danceability.trend SE df lower.CL upper.CL
                                                       25.8
country
                          12.7 6.71 5988
                                            -0.455
deep-house
                         -27.6 9.02 5988
                                           -45.275
                                                       -9.9
dubstep
                           3.0 6.59 5988
                                           -9.921
                                                       15.9
hip-hop
                         -75.1 7.01 5988
                                          -88.865
                                                      -61.4
                          13.5 7.20 5988
metal
                                           -0.619
                                                       27.6
                                                       28.8
rock
                          16.7 6.15 5988
                                            4.653
```

Confidence level used: 0.95

```
mod <- popularity ~ danceability * track_genre
fit <- lm(mod, data = spotify_by_genre)
emmeans(fit, "track_genre", at = list(danceability
= 0)) # genre-specific intercepts
emtrends(fit, "track_genre", var = "danceability")
# genre-specific slopes</pre>
```



Clever, but it's an answer to a different question and it comes at the cost of statistical power. While the relationships are permitted to differ, they can no longer benefit from what they share. What's in between?

Partial pooling

$$Y_{i,j} = \beta_0 + \beta_1 X_{i,j} + u_i + v_i X_{i,j} + \varepsilon_{i,j}$$

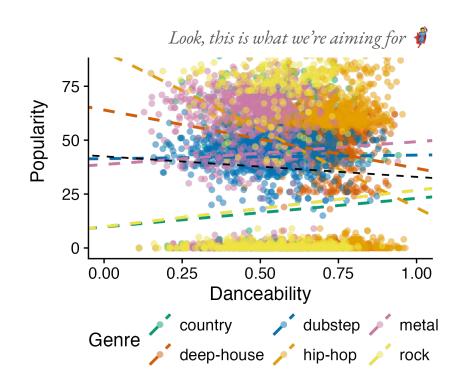
$$= (\beta_0 + u_i) + (\beta_1 + v_i) X_{i,j} + \varepsilon_{i,j}$$

$$u_i \sim \text{Normal}(0, \sigma_u)$$

$$v_i \sim \text{Normal}(0, \sigma_v).$$

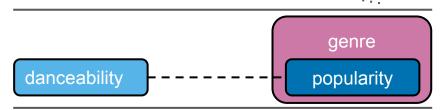
Fixed effect models the average relationship.

Random effects model the genres' deviations from the average, coming from a group-level normal distribution.



Model thinking

How are the danceability and popularity of tracks related?



$$Y_{i,j} = \beta_0 + \beta_1 X_{i,j} + u_i + v_i X_{i,j} + \varepsilon_{i,j} = (\beta_0 + u_i) + (\beta_1 + v_i) X_{i,j} + \varepsilon_{i,j}$$

```
mod <- popularity ~ danceability + (1 +
danceability | track_genre)
library("lmerTest") # don't use lme4
fit <- lmer(mod, data = spotify_by_genre)</pre>
```

- ☐ Fixed: popularity ~ danceability
- Random: 1 + danceability | track_genre)
 - (what is nested | in what)
 - ☐ intercept + slope

Results

```
summary(fit)
```

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: mod
   Data: spotify by genre
REML criterion at convergence: 56338.6
Scaled residuals:
              1Q Median
-2.35235 -0.69640 -0.01326 0.67670 2.81848
Random effects:
                         Variance Std.Dev. Corr
 track genre (Intercept) 1014.8 31.86
            danceability 1250.9 35.37
Number of obs: 6000, groups: track genre, 6
Fixed effects:
            Estimate Std. Error
                                   df t value Pr(>|t|)
(Intercept) 42.477
                       13.131 4.971 3.235
danceability -9.522
                       14.731 5.014 -0.646
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
           (Intr)
danceabilty -0.936
```

```
lme4::lmer(fit); lmerTest::lmer(fit)
```

Fixed effect

Intercept: average popularity where danceability is 0, before genre offset

Slope: average decrease in popularity when danceability increases by 1, before genre offset (divide by 10 for danceability increase by .1) > not significant

Random effects

Intercept + slope: fluctuations of individual coefficients (for genres), summarized by standard deviations (mean = 0)

13

Evaluation | Confidence intervals

```
Random effects:
                          Variance Std.Dev. Corr
Groups
             Name
track genre (Intercept) 1014.8
             danceability 1250.9
                                   35.37
                                            -0.94
Residual
                           696.3
                                   26.39
Number of obs: 6000, groups: track genre, 6
Fixed effects:
             Estimate Std. Error
                                     df t value Pr(>|t|)
              42.477
                                          3.235
(Intercept)
                          13.131 4.971
                                                  0.0233 *
danceability
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Does it make sense to include the random intercept and random slope?
- Is there an average effect of danceability?

Evaluation | Fixed & random effects

```
fixef(fit); ranef(fit); coef(fit)
```

```
$`(Intercept)`
[1] 42.47747
$danceability
[1] -9.522212
$track genre
           (Intercept) danceability
country
            -32.753747
                           22.81309
             21.501598
                          -17.51555
deep-house
dubstep
             -1.064435
                           11.17599
hip-hop
             48.654123
                          -62.94547
metal
             -3.749130
                           20.08089
            -32.588409
                           26.39105
rock
$track genre
           (Intercept) danceability
country
              9.723725
                          13.290874
             63.979070
deep-house
                         -27.037764
dubstep
             41.413037
                           1.653777
hip-hop
             91.131595
                         -72.467678
             38.728342
                          10.558677
metal
              9.889063
                          16.868840
rock
```

Miró, these coefficients look an awful lot like the coefficients from my interaction analysis, don't they?

```
track genre danceability.trend SE
                                      df lower.CL upper.CL
                          12.7 6.71 5988
                                            -0.455
country
                                                       25.8
deep-house
                         -27.6 9.02 5988
                                          -45.275
                                                       -9.9
dubstep
                           3.0 6.59 5988
                                            -9.921
                                                       15.9
hip-hop
                         -75.1 7.01 5988
                                           -88.865
                                                      -61.4
metal
                          13.5 7.20 5988
                                            -0.619
                                                       27.6
                          16.7 6.15 5988
                                             4.653
                                                       28.8
rock
```

Confidence level used: 0.95

Yes, it's referred to as shrinkage, can you see why? 🦸

Multilevel analysis vs. interaction analysis

Interaction analysis

Separate relations for each genre

- X Dependent observations
- X Few/varying observations per level
- Large heterogeneity across levels
- Few groups per level

Multilevel analysis

Average relation given within-genre dependence

- Dependent observations
- Few/varying observations per level
- X Large heterogeneity across levels
- X Few groups per level

You may also interpret the random slopes for the (shrunken, partial-pooled) interaction, if you want to account for the genre-independent relation between danceability and popularity. But here, it might make

little sense

🦹 You called me naive? Seems like a good choice after all.

Evaluation | Model comparisons

```
fit 0 <- lm(popularity ~ danceability, data =
spotify by genre)
fit 1 <- lmer(popularity ~ danceability + (1 |
track genre), data = spotify by genre)
fit 2 <- lmer(popularity ~ danceability + (1 +
danceability | track genre), data =
spotify by genre)
anova(fit 1, fit 2, fit 0)
```

```
Data: spotify by genre
Models:
fit 0: popularity ~ danceability
fit 1: popularity ~ danceability + (1 | track genre)
fit 2: popularity ~ danceability + (1 + danceability | track genre)
     npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
fit 0
        3 57469 57489 -28731
        4 56468 56495 -28230
                              56460 1002.92 1 < 2.2e-16 ***
fit 1
fit 2
        6 56362 56403 -28175
                                56350 109.31 2 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- What's the best fitting model?
- Why?

Across genres, what do the relationships between danceability and popularity have in common (fixed) and what sets them apart (random). Evidently significant, because there's a lot that sets them apart: good reason to adjust the average relationship by their genre-dependencies. But, is the average relationship meaningful if there's so much that sets them apart?

If you hate statistics, choose

- Complete pooling
- No-pooling
- Partial pooling
- Carpooling

Takeaways

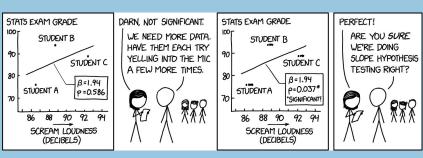


Illustration by Randall Munroe (wtf)

Takeaways

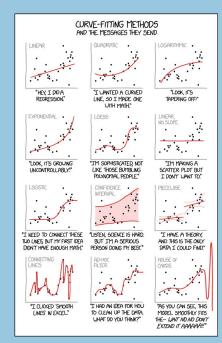


Illustration by Randall Munroe (wtf)



Slides

alexandersavi.nl/teaching/

License

Statistical Reasoning by Alexander Savi is licensed under a <u>Creative Commons</u>
<u>Attribution-ShareAlike 4.0 International License</u>. An <u>Open Educational Resource</u>.
Approved for <u>Free Cultural Works</u>.