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(Palmer	et	al,	2005	JVis)

Two-alternative	forced	choice	(2AFC)	task
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Overview

• One	implementation:	Linear	Ballistic	Accumulator
• Estimating	parameters
• Relationship	with	neuroscience
• Another	implementation:	The	(EZ)	diffusion	decision	model
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How	to	quantify	a	race?

• Sequential	Probability	Ratio	Test	(SPRT)
• Diffusion	Decision	model	(DDM)	(EZ	diffusion	model)
• Linear	Ballistic	Accumulator	model	(LBA)
• Leaky	Competitive	Accumulator	model	(LCA)
• Retrieval	by	Accumulating	Evidence	in	an	Architecture	(RACE/A)
• …
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Linear	Ballistic	Accumulator
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Threshold (b)

Decision time

Start point
sampled from

U[0,A]

Decision time

Drift sampled from N(v,s)

Decision time

Response Alternative 1 Response Alternative 2 Response Alternative n...

Linear	Ballistic	Accumulator

• Every	option	has	its	own	accumulator
• Fastest	accumulator	wins	(that	option	gets	selected)



Overview
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Model	fitting

• What	are	the	optimal	parameters
• Startpoint
• Threshold
• Drift	rate
• Non-decision	time

• Optimal:	Least	unexplained	variance
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(Palmer	et	al,	2005	JVis)

Example:	effect	of	target	location	in	2AFC
Target dTarget d



Example:	effect	of	target	location	in	2AFC

• Binary	choice
• Two	instructions	(blocks):	”Focus	on	speed”	vs	“Focus	on	Accuracy”
• Target	location	varied

(Van	Maanen	et	al.,	2012,	F	Dec	Neuro)
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• Othere parameters	did	not	vary	across	conditions
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Overview

• One	implementation:	Linear	Ballistic	Accumulator
• Estimating	parameters
• Relationship	with	neuroscience
• Another	implementation:	The	(EZ)	diffusion	decision	model
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Approach

• Fit	model	for	individual	participants
• Estimate	the	optimal	set	of	parameters

• Extract	average	BOLD	response	per	participant/condition
• Or	other	relevant	neurophysiological	measure

• Do	these	correlate?
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Turner	et	al	(2017)	Approaches	to	analyses	in	model-based	cognitive	neuroscience.	JMP



Forstmann et	al	(2008)	PNAS
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(Palmer	et	al,	2005	JVis)

Example:	effect	of	target	location	in	2AFC
Target dTarget d



Target dTarget d
(A)

(B)
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Sequential	Probability	Ratio	Test	(SPRT)

• “Optimal”	procedure	for	binary	choices
• Guarantees	minimal	mean	response	time

• For	a	specific	critical	threshold	P(H|D)

P (Hi|D) =
P (D|Hi)P (Hi)P
j P (D|Hj)P (Hj)
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Diffusion	Decision	Model
• “implementation”	of	SPRT
• Evidence	FOR	option	1	=	evidence	AGAINST	option	2
• By	design	only	applicable	to	2AFC
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Noise



Diffusion	Decision	Model

Airplane

Noise				



Lower	drift	rate

• Slower	responses	(effect	is	larger	in	tail	of	RT	distribution)
• More	errors



Diffusion	Decision	Model

Vliegtuig

Ruis

Airplane

Noise				



Lower	thresholds

• Faster	responses
• More	errors



Diffusion	Decision	Model
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Lower	start	point

• Slower	correct	responses
• Faster	errors
• More	errors

<- Correct!

<- Error!
<- Correct!

<- Error!



Lower	non-decision	time

• NDT	=	TSE	+	TRE
• RT	=	DT	+NDT

• Faster	responses
• No	change	in	error	rate



EZ	Diffusion	Decision	Model	(Thursday)
8    WAGENMAKERS, VAN DER MAAS, AND GRASMAN

2004). Many experimental psychologists, even those with 
a firm background in mathematics and computer pro-
gramming, will find the amount of effort required to fit 
the Ratcliff diffusion model rather prohibitive.

The EZ-diffusion model constitutes an attempt to popu-
larize a diffusion model analysis of two-alternative forced 
choice tasks. In order to achieve this goal, we have consid-
erably simplified the Ratcliff diffusion model. These sim-
plifications are warranted by the fact that the aim of the 
EZ model is much more modest than that of the Ratcliff 
model. The EZ model tries to determine only the most 
psychologically relevant parameters of the Ratcliff model: 
drift rate v (i.e., quality of information), boundary separa-
tion a (i.e., response conservativeness), and nondecision 
time Ter. The EZ model does not seek to address the issue 
of RT distributions, especially not for error responses. 
Thus, the price that has to be paid for the simplification 
of the diffusion model is that it no longer provides a very 
detailed account of the observed behavior, but instead op-
erates at a more macroscopic level. Of course, with few 
data, this may be the only available option. We will return 
to this issue in the General Discussion section.

The first simplification is that the EZ-diffusion model 
does not allow across-trials variability in parameters. This 
means that st, sz, and  are effectively removed from the 
model. The effect of st—that is, the across-trials variabil-
ity in Ter—is usually not very pronounced (see Ratcliff & 
Tuerlinckx, 2002). The effect of sz—that is, across-trials 
variability in starting point—allows the model to handle 
error responses that are on average faster than correct re-
sponses. The effect of —that is, across-trials variability 
in drift rate—is to produce error responses that are on 
average slower than correct responses. From the bird’s-
eye perspective taken by the EZ-diffusion model, these 
aspects of the data are outside the focus of interest.

The second and final simplification is that the starting 
point z is assumed to be equidistant from the response 

boundaries, so that z  a/2. As mentioned earlier, in prac-
tical applications of the diffusion model this is often found 
to be approximately true (see Figure 3). For instance, Rat-
cliff et al. (2001) had participants decide whether a screen 
with asterisks came from a “high” or “low” distribution. 
Since the design of the stimulus materials was symmetric, 
one would not expect participants to be biased toward ei-
ther the “high” or the “low” response category (Ratcliff 
et al., 2001, p. 332).

In other experiments, however, biases in starting point 
are more plausible. Consider a hypothetical situation 
in which participants have an a priori bias to respond 
“word” to letter strings presented in a lexical decision 
task. When such a bias exists, the “vanilla” version of the 
EZ-diffusion model presented here is inappropriate. For-
tunately, there exists an easy check for the presence of 
bias in the starting point: When participants have a start-
ing point bias that favors the “word” response in a lexical 
decision task, this means that for word stimuli the correct 
responses are faster than the error responses, whereas for 
nonword stimuli the correct responses are slower than the 
error responses. Such a pattern of results indicates a bias 
in starting point, and this bias renders the results from an 
EZ-diffusion model analysis suspect. In the General Dis-
cussion, we will discuss an extension of the EZ-diffusion 
model that can be applied to situations in which the start-
ing point is biased. For now, we will work under the as-
sumption that the starting point is equidistant from the 
response boundaries—that is, that z  a/2.

As will soon be apparent, the simplifications above 
allow the EZ-diffusion model to determine v, a, and Ter 
without a complicated parameter-fitting exercise. Fig-
ure 4 shows the EZ-diffusion model and its streamlined 
set of parameters.

Before proceeding, we should issue a general disclaimer. 
Any analysis that involves unobserved variables may lead to 
misleading results when the hypothesized model radically 

T

a
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s

Figure 4. The EZ-diffusion model.

Correct	threshold/boundary

Error	threshold/boundary

As	preparation,	read	Wagenmakers,	E.-J.,	van	der	Maas,	H.	L.	J.,	&	Grasman,	R.	P.	P.	P.	(2007). An	EZ-diffusion	model	for	
response	time	and	accuracy. Psychonomic Bulletin	&	Review,	14,	3-22



Questions?
See	you	on	thursday


