Philosophy of Science and Statistical Reasoning

Bayesian Inference

Student Puzzlement Scale

Previously, on statistical reasoning

Frequentist inference

Bayesian inference

p(D | H₀)

p(H | D)

Topics

Statistical reasoning **Empirical cycle Probability distributions Frequentist inference** Sample / sampling distribution Central limit theorem Normal distribution P-value Type I/II errors Effect size Confidence interval Power Test statistics Linear regression t-Test Moderation **F**-distribution Nonparametric inference **ANOVA Bayesian inference**

Questions

What is Bayesian inference? What is Bayes theorem?

How can Bayesian inference be used for hypothesis testing?

How can Bayesian inference be used for parameter estimation?

Bayes theorem

D: positive ADHD test result H_{\Box} : ADHD

 \bigcirc What's the probability of H_{\Box}?

- High?
- Low?
- Why?

Bayes theorem

- D: positive ADHD test result H_{_}: ADHD
- \bigcirc What's the probability of H_{\Box}?
 - High?
 - Low?
 - Why?

	\sim									
Ê										
自										
自										
自										
自	自	自	自	自	自	自	自	自	自	自

Base rate

" It is the proportion of individuals in a population who have a certain characteristic or trait. — <u>Wikipedia</u>

Base rate fallacy

" [A] type of fallacy in which people tend to ignore the base rate (e.g., general prevalence) in favor of the individuating information (i.e., information pertaining only to a specific case). — <u>Wikipedia</u>

○ Out of the number of people who test positive, how many have ADHD? $(9/29 \approx .3)$

Keith Devlin on base rates (<u>Edge.org</u>).

Base rate fallacy

Illustration by Randall Munroe (wtf)

Bayes theorem

 $p(H \mid D) = (p(H) \times p(D \mid H)) / p(D)$

	2					
自						
自						
自						

Prior

 $p(H \mid D) = (p(H) \times p(D \mid H)) / p(D)$

$$p(H) = / (H + H) = 10 / (10 + 100) = .09$$

The probability of ADHD.

Ê										
Ê										
Ê										
Ê										
Ê										
Ê		Ê	Ê		Ê	Ê		Ê	Ê	Ê
	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê

Likelihood

 $p(H \mid D) = (p(H) \times p(D \mid H)) / p(D)$

$$p(H) = / (+) = 10 / (10 + 100) = .09$$

 $p(D | H) =] / = 9 / 10 = .9$

The probability of a positive test result, given ADHD.

Prior × likelihood

The probability of a positive test result *and* ADHD.

	<u> </u>									
自										
自										
E I										
	E S	E	E S	E	E	rén (rén (E		
							re-a		rea 1	

Marginal likelihood

The probability of a positive test result.

	<u> </u>									
Ê										
Ê										
Ê										
Ê										
Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê
	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê

Posterior

 $p(H | D) = (p(H) \times p(D | H)) / p(D) = .08 / .26 \approx .3$ p(H) = / (+) = 10 / (10 + 100) = .09 p(D | H) = / = / = 9 / 10 = .9 $p(H) \times p(D | H) = / (+) = .09 \times .9 = .08$ $p(D) = (p(H) \times p(D | H)) + (p(\neg H) \times p(D | \neg H)) =$.08 + .18 = .26

The probability of someone with ADHD, given a positive test result.

	<u> </u>									
Ê										
Ê										
Ê										
Ê										
Ê										
	Ê					Ê				Ê
	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê

Posterior

 $p(H | D) = (p(H) \times p(D | H)) / p(D) = .08 / .26 \approx .3$ p(H) = / (+) = 10 / (10 + 100) = .09 p(D | H) = / = 9 / 10 = .9 $p(H) \times p(D | H) = / (+) = .09 \times .9 = .08$ $p(D) = (p(H) \times p(D | H)) + (p(\neg H) \times p(D | \neg H)) = .08 + .18 = .26$

 \rightleftarrows Out of the number of people who test positive, how many have ADHD? (9/29 ≈ .3)

	自		Ê		
					2

Bayes theorem

 $p(H_{\Box} | D) = p(H_{\Box}) \times p(D | H_{\Box}) / p(D) \approx .3$ $p(H_{\textcircled{o}} | D) = p(H_{\textcircled{o}}) \times p(D | H_{\textcircled{o}}) / p(D) \approx .7$ ('alternative' hypothesis)

3Blue1Brown on <u>Bayes theorem</u> and the <u>product rule</u> (prior × likelihood).
Bayes theorem visualization by <u>Seeing</u> <u>Theory</u>.

3Blue1Brown on improving Bayes theorem.

Bayesian hypothesis testing

" The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other.

— <u>Wikipedia</u>

Bayes factor

 $K = p(D | H_{\Box}) / p(D | H_{\Theta}) = ?$

 $p(H | D) = (p(H) \times p(D | H)) / p(D)$ $p(D | H_{o}) = \square / \square = 9 / 10 = .9$ $p(D | H_{o}) = \square / \square = 20 / 100 = .2$

 $K = p(D \mid H_{\Box}) / p(D \mid H_{\Theta}) = 4.5$

- Continuous degree of evidence (vs. all-or-none)
- Monitor evidence during data collection
- Evidence of absence (data support a null effect) and absence of evidence (data are not informative)

		Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ê	Ē
Ê	Ê							Ê	Ê	

Bayes factor interpretation

к	dHart	bits	Strength of evidence
< 10 ⁰	< 0	< 0	Negative (supports M_2)
10 ⁰ to 10 ^{1/2}	0 to 5	0 to 1.6	Barely worth mentioning
10 ^{1/2} to 10 ¹	5 to 10	1.6 to 3.3	Substantial
10 ¹ to 10 ^{3/2}	10 to 15	3.3 to 5.0	Strong
10 ^{3/2} to 10 ²	15 to 20	5.0 to 6.6	Very strong
> 10 ²	> 20	> 6.6	Decisive

— <u>Wikipedia</u>

log ₁₀ K	к	Strength of evidence
0 to 1/2	1 to 3.2	Not worth more than a bare mention
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
> 2	> 100	Decisive

— <u>Wikipedia</u>

Discussion on Andrew Gelman's blog. <u>Mindless (Bayesian) statistics</u>.

Bayes factor interr

к	dHart	bits	St
< 10 ⁰	< 0	< 0	Ne
10 ⁰ to 10 ^{1/2}	0 to 5	0 to 1.6	Ba
10 ^{1/2} to 10 ¹	5 to 10	1.6 to 3.3	
10 ¹ to 10 ^{3/2}	10 to 15	3.3 to 5.0	
$10^{3/2}$ to 10^2	15 to 20	5.0 to 6.6	(2
> 10 ²	> 20	> 6.6	

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Illustration by Randall Munroe (wtf)

15:00

Bayesian parameter estimation

🥯: theta = p(heads)

"Which values of theta *are good estimates (H), given my data (D)?"*

 $p(H \mid D) = (p(H) \times p(D \mid H)) / p(D)$

How to get <u>fair results from a biased coin</u>?

Draw Your Belief

Prior distribution p(H)

Prior Distribution (Beta)

- Prior belief/<u>information</u>
- Uninformative/informative
- Weakly/strongly informative
- Skeptical
- Point-valued

Beta distribution.

Likelihood distribution p(D | H)

K Web simulations by <u>Seeing Theory</u>.

Posterior distribution p(H | D)

 $p(H \mid D) = (p(H) \times p(D \mid H)) / p(D)$

p(D) (marginal likelihood distribution): "integral of doom"

But, beta distribution is *conjugate prior* of binomial distribution:

For a prior theta~Beta(a,b) and data k and N, the posterior is theta~Beta(a+k,b+N-k).

Repeat! Iterative!

Web simulations by <u>Kristoffer Magnusson</u> and <u>Seeing Theory</u>.

Bayesian thinking for toddlers

Bayesian Thinking for Toddlers

Eric-Jan Wagenmakers illustrations by Viktor Beekman

(grab a <u>free</u> pdf)

<u>A brief introduction to Bayesian inference</u> by Johnny van Doorn.

Bayesian and Frequentist inference side-by-side (<u>Shiny app</u> by John Kruschke, <u>video tutorial</u> by Eero Liski).

Image: Second system Download JASP Image: Second system JASP-stats.org Image: Second system Follow JASP Image: Second system <t

How to use JASP: Lots of resources.

Illustration by Randall Munroe (wtf / controversy)

Topics

Statistical reasoning Empirical cycle **Probability distributions** Frequentist inference Sample / sampling distribution Central limit theorem Normal distribution *P*-value Type I/II errors Effect size Confidence interval Power Test statistics Linear regression t-Test Moderation **F**-distribution Nonparametric inference ANÓVA **Bayesian** inference

Illustration by Jennifer Cheuk

17 Weekly assignment

💯 Exam

SR

- Open and closed questions
- Practical and theoretical questions
- R
- JASP output (no access to software)
- No follow-up questions (like in weekly assignments)
- Majority of questions

PoS

• Ask Steven, previously essay questions

'How can we use statistical inference to learn about the world?'

- Expand foundation for follow-up courses and independent learning.
- Expand knowledge and skills in statistics and statistical reasoning, develop statistical intuition, avoid common pitfalls and fallacies, and so on.

8

Courses

- Improve Your Statistical Inferences / Questions (Daniel Lakens)
- Learning Statistics with R (Danielle Navarro)

Blogs

- <u>Statistical Modeling, Causal Inference, and Social Science</u> (Andrew Gelman et al.) (recommendations)
- Statistical Thinking (Frank Harrell)
- <u>Bayesian Spectacles</u> (Eric-Jan Wagenmakers et al.)
- <u>Error Statistics Philosophy</u> / <u>PhilStatWars</u> (Deborah Mayo)
- <u>Simply Statistics</u> (Jeff Leek, Roger Peng, Rafa Irizarry)
- <u>The 20% Statistician</u> (Daniel Lakens)
- Data Colada (Uri Simonsohn, Leif Nelson, Joe Simmons)
- Doing Bayesian Data Analysis (John Kruschke)
- <u>R-Bloggers</u>

Podcasts

• <u>Nullius in Verba</u> (Smriti Mehta, Daniel Lakens)

Colophon

Slides alexandersavi.nl/teaching/

License

Statistical Reasoning by Alexander Savi is licensed under a <u>Creative Commons</u> <u>Attribution-ShareAlike 4.0 International License</u>. An <u>Open Educational Resource</u>. Approved for <u>Free Cultural Works</u>.