Philosophy of Science and Statistical Reasoning

Factorial Analysis of Variance (ANOVA)

Student Puzzlement Scale

- The New York Times (Oct. 8, 2023)

Prediction market

Observer effect

Uit hoeveel procent water bestaat een komkommer?

A 83%

B 92%

C 97%

Previously, on statistical reasoning

Topics

Statistical reasoning Empirical cycle **Probability distributions Frequentist inference** Sample / sampling distribution Central limit theorem Normal distribution P-value Type I/II errors Effect size Confidence interval Power Test statistics Linear regression t-Test Moderation **F**-distribution Nonparametric inference **ANOVA Bayesian** inference

Questions

How can we analyze models with multiple (categorical) independent variables?

How can we analyze models with repeated measurements for multiple (categorical) independent variables?

ANOVA

Comparing...

- two means (*t*-test)
- several means (one-way ANOVA)
- several means for several independent variables, measured between groups (independent factorial ANOVA)
- several means for several independent variables, measured within groups (repeated measures factorial ANOVA)
- several means for several independent variables, measured between and within groups (mixed-design ANOVA)

Number of independent variables

- 1 one-way
- >1 two-way, three-way, ... (factorial)

Type of measurement

- independent (between subject)
- repeated measures (within subject)
- mixed (both)

Type of independent variable

- categorical (ANOVA, but GLM)
- continuous (regression)

Number of dependent variables

- 1 ANOVA
- >1 MANOVA

Independent factorial ANOVA

De student als consument maakt vrouwelijke docenten extra kwetsbaar

Nieuws | door Frans van Heest

13 september 2023 | Vrouwelijke docenten worden aantoonbaar gediscrimineerd door studentenevaluaties, maar toch blijft het instrument voor veel universiteiten belangrijk om medewerkers te beoordelen. Cursusevaluaties moedigen echter middelmatig onderwijs aan en zijn extra nadelig voor vrouwen.

— <u>ScienceGuide</u> (Sep. 13, 2023)

Q. Is the effect of sex on rating modified by rank?

H. The effect of sex on rating is larger for lower ranked female teachers than for higher ranked female teachers.

E. In the open evals data set, I expect ...

Student evaluations

library("moderndive")
help(evals)
mod <- score ~ gender + rank + gender : rank
with(evals, table(gender, rank))</pre>

Ĭ	rank			
gender	teaching	tenure	track	tenured
female	50		69	76
male	52		39	177

> str(evals[, c("score", "gender", "rank")])
tibble [463 x 3] (S3: tbl_df/tbl/data.frame)
\$ score : num [1:463] 3.3 3.3 3.4 3.4 3.4 3.5 3.5 3.5 3.6 ...
\$ gender: Factor w/ 2 levels "female", "male": 1 1 1 1 1 1 1 1 1 1 ...
\$ rank : Factor w/ 3 levels "teaching", "tenure track",..: 1 1 1 1 1 1 1 1 1 ...

Decomposition of variability

Variance	Sum of squares	df	Mean squares	F-ratio
Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{model} - 1$	$\frac{SS_{model}}{df_{model}}$	$\frac{MS_{model}}{MS_{error}}$
Α	$SS_A = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{A} - 1$	$\frac{SS_A}{df_A}$	$\frac{MS_A}{MS_{error}}$
В	$SS_B = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_B - 1$	$\frac{SS_B}{df_B}$	$\frac{MS_B}{MS_{error}}$
AB	$SS_{A \times B} = SS_{model} - SS_A - SS_B$	$df_A \times df_B$	$\frac{SS_{AB}}{df_{AB}}$	$\frac{MS_{AB}}{MS_{error}}$
Error	$SS_{error} = \sum s_k^2 (n_k - 1)$	$N - k_{model}$	$\frac{SS_{error}}{df_{error}}$	
Total	$SS_{total} = SS_{model} + SS_{error}$	N-1	$\frac{SS_{total}}{df_{total}}$	

Unexplained variance

Variance	Sum of squares	df	Mean squares	F-ratio	
Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{model} - 1$	SS _{model} df _{model}	MS _{model} MS _{error}	
A	$SS_A = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{A} - 1$	$\frac{SS_A}{df_A}$	MS _A MS _{error}	
В	$SS_B = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_B - 1$	$\frac{SS_B}{df_B}$	MS _B MS _{error}	
AB	$SS_{A \times B} = SS_{model} - SS_A - SS_B$	$df_A \times df_B$	SS _{AB} df _{AB}	MS _{AB} MS _{error}	
Error	$SS_{error} = \sum s_k^2 (n_k - 1)$	$N - k_{model}$	SS _{error} df _{error}		
Total	$SS_{total} = SS_{model} + SS_{error}$	N – 1	$\frac{SS_{total}}{df_{total}}$		
var_score_k2 <- var_score_k4 <- var_score_k4 <- var_score_k6 <- n_k1 <- table(n_k4 <- table(n_k4 <- table(ss_error_k1 <- ss_error_k1 <- ss_error_k3 <- ss_error_k3 <- ss_error_k5 <- ss_error_k6 <- ss_error <- ss_	<pre>var(subset(x = evals, gender == "fd var(subset(x = evals, gender == "fd var(subset(x = evals, gender == "md var(subset(x = evals, gender == "md var(subset(x = evals, gender == "md var(subset(x = evals, gender == "md var(subset(r, evals\$rank)[["female", vals\$gender, evals\$rank)[["male", "f vals\$gender, evals\$rank)[["male", "f vals\$gender, evals\$rank)[["male", "f varscore_k1 * (n_k1 - 1) var_score_k2 * (n_k2 - 1) var_score_k3 * (n_k3 - 1) var_score_k3 * (n_k4 - 1) var_score_k6 * (n_k6 - 1) m(ss_error_k1, ss_error_k2, ss_error_s) ls\$score) < k_model error / df_error</pre>	emale" & rank = emale" & rank = ale" & rank = ale" & rank = ale" & rank = "teaching"]] "tenure track" "tenure track"]] teaching"]] teaching"]]	<pre>== "tenure track", == "tenured", select "tenure track", se "tenure track", se "tenured", select "]]] / //////////////////////////////</pre>	<pre>select = "score", d := "score", d ilect = "score", dro = "score", dro :_error_k6)</pre>	e", drop = TRUE)) rop = TRUE)) o g = TRUE)) , drop = TRUE)) p = TRUE)) p = TRUE))

Explained variance (full model)

Variance	Sum of squares	df	Mean squares	F-ratio
Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{model} - 1$	SS _{model} df _{model}	$\frac{MS_{model}}{MS_{error}}$
A	$SS_A = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{A} - 1$	$\frac{SS_A}{df_A}$	MS _A MS _{error}
В	$SS_B = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_B - 1$	$\frac{SS_B}{df_B}$	$\frac{MS_B}{MS_{error}}$
AB	$SS_{A \times B} = SS_{model} - SS_A - SS_B$	$df_A \times df_B$	$\frac{SS_{AB}}{df_{AB}}$	$\frac{MS_{AB}}{MS_{error}}$
Error	$SS_{error} = \sum s_k^2 (n_k - 1)$	$N - k_{model}$	$rac{\mathrm{SS}_{\mathrm{error}}}{\mathrm{df}_{\mathrm{error}}}$	
Total	$SS_{total} = SS_{model} + SS_{error}$	N-1	$\frac{SS_{total}}{df_{total}}$	

mean_score <- mean(evals\$score)
<pre>mean_score_k1 <- mean(subset(x = evals, gender == "female" & rank == "teaching", select = "score", drop = TRUE))</pre>
<pre>mean_score_k2 <- mean(subset(x = evals, gender == "female" & rank == "tenure track", select = "score", drop = TRUE)</pre>
<pre>mean_score_k3 <- mean(subset(x = evals, gender == "female" & rank == "tenured", select = "score", drop = TRUE))</pre>
<pre>mean_score_k4 <- mean(subset(x = evals, gender == "male" & rank == "teaching", select = "score", drop = TRUE))</pre>
<pre>mean_score_k5 <- mean(subset(x = evals, gender == "male" & rank == "tenure track", select = "score", drop = TRUE))</pre>
<pre>mean_score_k6 <- mean(subset(x = evals, gender == "male" & rank == "tenured", select = "score", drop = TRUE))</pre>
ss_model_k1 <- n_k1 * (mean_score_k1 - mean_score)^2
ss_model_k2 <- n_k2 * (mean_score_k2 - mean_score)^2
ss_model_k3 <- n_k3 * (mean_score_k3 - mean_score)^2
ss_model_k4 <- n_k4 * (mean_score_k4 - mean_score)^2
ss_model_k5 <- n_k5 * (mean_score_k5 - mean_score)^2
ss_model_k6 <- n_k6 * (mean_score_k6 - mean_score)^2
ss_model <- sum(ss_model_k1, ss_model_k2, ss_model_k3, ss_model_k4, ss_model_k5, ss_model_k6)
df_model <- k_model - 1
ms_model <- ss_model / df_model
ms_model / ms_error

Explained variance (gender)

Variance	Sum of squares	df	Mean squares	F-ratio
Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{model} - 1$	SS _{model} df _{model}	MS _{model} MS _{error}
A	$SS_A = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{A} - 1$	$\frac{SS_A}{df_A}$	$\frac{MS_A}{MS_{error}}$
В	$SS_B = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_B - 1$	$\frac{SS_B}{df_B}$	MS _B MS _{error}
AB	$SS_{A \times B} = SS_{model} - SS_A - SS_B$	$df_A \times df_B$	$\frac{SS_{AB}}{df_{AB}}$	MS _{AB} MS _{error}
Error	$SS_{error} = \sum s_k^2 (n_k - 1)$	$N - k_{model}$	$\frac{SS_{error}}{df_{error}}$	
Total	$SS_{total} = SS_{model} + SS_{error}$	N-1	$\frac{SS_{total}}{df_{total}}$	

<pre>nean_score_female <- mean(subset(x = evals, subset = gender == "female", select = "score", drop = TRI</pre>	JE))
mean_score_male <- mean(subset(x = evals, subset = gender == "male", select = "score", drop = TRUE))	
_female <- table(evals\$gender)[["female"]]	
n_male <- table(evals\$gender)[["male"]]	
ss_female <- n_female * (mean_score_female - mean_score)^2	
ss_male <- n_male * (mean_score_male - mean_score)^2	
ss_gender <- sum(ss_female, ss_male)	
c_gender <- 2	
if_gender <- k_gender - 1	
15_gender <- ss_gender / df_gender	
is_gender / ms_error	

Explained variance (rank)

Formulas

Variance	Sum of squares	df	Mean squares	F-ratio
Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{model} - 1$	$\frac{SS_{model}}{df_{model}}$	MS _{model} MS _{error}
Α	$SS_A = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{A} - 1$	$\frac{SS_A}{df_A}$	MS _A MS _{error}
В	$SS_B = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_B - 1$	$\frac{SS_B}{df_B}$	$\frac{MS_B}{MS_{error}}$
AB	$SS_{A \times B} = SS_{model} - SS_A - SS_B$	$df_A \times df_B$	$\frac{SS_{AB}}{df_{AB}}$	MS _{AB} MS _{error}
Error	$SS_{error} = \sum s_k^2 (n_k - 1)$	$N - k_{model}$	$\frac{SS_{error}}{df_{error}}$	
Total	$SS_{total} = SS_{model} + SS_{error}$	N-1	$\frac{SS_{total}}{df_{total}}$	

<pre>mean_score_teaching <- mean(subset(x = evals, subset = rank == "teaching", select = "score", drop = TRUE))</pre>
<pre>mean_score_tenure_track <- mean(subset(x = evals, subset = rank == "tenure track", select = "score", drop = TRUE))</pre>
<pre>mean_score_tenured <- mean(subset(x = evals, subset = rank == "tenured", select = "score", drop = TRUE))</pre>
n_teaching <- table(evals\$rank)[["teaching"]]
n_tenure_track <- table(evals\$rank)[["tenure track"]]
n_tenured <- table(evals\$rank)[["tenured"]]
ss_teaching <- n_teaching * (mean_score_teaching - mean_score)^2
ss_tenure_track <- n_tenure_track * (mean_score_tenure_track - mean_score)^2
ss_tenured <- n_tenured * (mean_score_tenured - mean_score)^2
ss_rank <- sum(ss_teaching, ss_tenure_track, ss_tenured)
k_rank <- 3
df_rank <- k_rank - 1
ms_rank <- ss_rank / df_rank
ms_rank / ms_error

Lecturer

Explained variance (gender × rank)

Variance	Sum of squares	df	Mean squares	F-ratio
Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{model} - 1$	$\frac{SS_{model}}{df_{model}}$	MS _{model} MS _{error}
Α	$SS_A = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_{A} - 1$	$\frac{SS_A}{df_A}$	$\frac{MS_A}{MS_{error}}$
В	$SS_B = \sum n_k (\bar{X}_k - \bar{X})^2$	$k_B - 1$	$\frac{SS_B}{df_B}$	MS _B MS _{error}
AB	$SS_{A \times B} = SS_{model} - SS_A - SS_B$	$df_A \times df_B$	SS _{AB} df _{AB}	MS _{AB} MS _{error}
Error	$SS_{error} = \sum s_k^2 (n_k - 1)$	$N - k_{model}$	SS _{error} df _{error}	
Total	$SS_{total} = SS_{model} + SS_{error}$	N-1	SS _{total}	

WWW. PHDCOMICS. COM

Illustration by Jorge Cham

15:00

What's your type?

library("ez") ez::ezANOVA(data = evals, dv = score, wid = ID, between = c(gender, rank), type = 2, return_aov = TRUE)

with(evals, table(gender, rank)) # balanced? aov(); anova() # type I car::Anova() # type II/III (type III requires contrasts) ez::ezANOVA() # type I/II/III (default is II) Type I, II and III

- I (sequential): SS(A), SS(B | A), SS(AB | A, B)
- II (hierarchical): SS(A | B), SS(B | A), SS(AB | A, B)
- III (unique): SS(A | B, AB), SS(B | A, AB), SS(AB | A, B)

Type I, II or III?

- Balanced? I/II/III
- Highest-order interaction of interest? I/II/III
- Unbalanced, no significant interaction? II
- Confused? Check robustness and consult a statistician.
- SPSS? III

Multiple comparisons

Contrast

- Planned comparison
- Theoretical interest
- High power
- High precision

Post hoc

- Unplanned comparisons
- Explore all differences
- Adjust t value for inflated type I error?

4.6 -4.4 gender Mean female male 4.2 -4.0 teaching tenure track tenured rank

ANOVA meets linear regression

60

anova(Im(formula = mod, data = evals)) # anova() computes the anova for an already fitted model (or compares nested models)

summary(aov(formula = mod, data = evals)) #
aov() is a <u>wrapper function</u> for Im()

Explore how individual <u>data points affect</u> <u>ANOVA results</u> (Seeing Theory).

Repeated measures and mixed ANOVA

Q. Which drug improves sleep the most (length)?

H. No hypothesis, let's explore!

E. In the sleep data set, ...

Decomposition of variability

Formulas

Variance	Sum of Squares	df	Mean Squares	F-ratio
Between	$SS_{between} = SS_{total} - SS_{within}$	$DF_{total} - DF_{within}$	$\frac{SS_{between}}{DF_{between}}$	
Within	$SS_{within} = \sum s_i^2 (n_i - 1)$	$(n_i - 1)n$	$\frac{SS_{within}}{DF_{within}}$	
• Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	<i>k</i> – 1	$rac{SS_{model}}{DF_{model}}$	$\frac{MS_{model}}{MS_{error}}$
• Error	$SS_{error} = SS_{within} - SS_{model}$	(n-1)(k-1)	$\frac{SS_{error}}{DF_{error}}$	
Total	$SS_{total} = s_{grand}^2 (N-1)$	N-1	$\frac{SS_{total}}{DF_{total}}$	

Total

Formulas

Variance	Sum of Squares	df	Mean Squares	F-ratio
Between	$SS_{between} = SS_{total} - SS_{within}$	$DF_{total} - DF_{within}$	$\frac{SS_{between}}{DF_{between}}$	
Within	$SS_{within} = \sum s_i^2 (n_i - 1)$	$(n_i - 1)n$	$\frac{SS_{within}}{DF_{within}}$	
• Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	<i>k</i> – 1	$rac{SS_{model}}{DF_{model}}$	$\frac{MS_{model}}{MS_{error}}$
• Error	$SS_{error} = SS_{within} - SS_{model}$	(n-1)(k-1)	$\frac{SS_{error}}{DF_{error}}$	
Total	$SS_{total} = s_{grand}^2 (N-1)$	N-1	$\frac{SS_{total}}{DF_{total}}$	

Student ID

Within

Formulas

Variance	Sum of Squares	df	Mean Squares	F-ratio
Between	$SS_{between} = SS_{total} - SS_{within}$	$DF_{total} - DF_{within}$	$\frac{SS_{between}}{DF_{between}}$	
Within	$SS_{within} = \sum s_i^2 (n_i - 1)$	$(n_i - 1)n$	$\frac{SS_{within}}{DF_{within}}$	
• Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	<i>k</i> – 1	$rac{SS_{model}}{DF_{model}}$	$\frac{MS_{model}}{MS_{error}}$
• Error	$SS_{error} = SS_{within} - SS_{model}$	(n-1)(k-1)	$\frac{SS_{error}}{DF_{error}}$	
Total	$SS_{total} = s_{grand}^2 (N-1)$	N-1	$\frac{SS_{total}}{DF_{total}}$	

Student ID

Model

Formulas

Variance	Sum of Squares	df	Mean Squares	F-ratio
Between	$SS_{between} = SS_{total} - SS_{within}$	$DF_{total} - DF_{within}$	$\frac{SS_{between}}{DF_{between}}$	
Within	$SS_{within} = \sum s_i^2 (n_i - 1)$	$(n_i - 1)n$	$\frac{SS_{within}}{DF_{within}}$	
• Model	$SS_{model} = \sum n_k (\bar{X}_k - \bar{X})^2$	<i>k</i> – 1	$rac{SS_{model}}{DF_{model}}$	$\frac{MS_{model}}{MS_{error}}$
• Error	$SS_{error} = SS_{within} - SS_{model}$	(n-1)(k-1)	$\frac{SS_{error}}{DF_{error}}$	
Total	$SS_{total} = s_{grand}^2 (N-1)$	N-1	$\frac{SS_{total}}{DF_{total}}$	

Student ID

F


```
ez::ezANOVA(data = sleep,
dv = extra,
wid = ID,
within = group,
type = 2,
return_aov = TRUE
```

F = 16.50088

F Statistic

ez::ezPlot(data = sleep, x = .(group), dv = .(extra), wid = .(ID), within = .(group)

Topics

Statistical reasoning Empirical cycle **Probability distributions** Frequentist inference Sample / sampling distribution Central limit theorem Normal distribution *P*-value Type I/II errors Effect size Confidence interval Power Test statistics Linear regression t-Test Moderation **F**-distribution Nonparametric inference ANÓVA **Bayesian** inference

Illustration by **Jennifer Cheuk**

Weekly assignment

🐞 Pub quiz

Create an *informative* four-choice question about the content of today's lecture.

An informative question has a large spread in responses across answer options.

Clarify answer options (which are (in)correct and why).

Illustration adapted from Snippets.com

Colophon

Slides alexandersavi.nl/teaching/

License

Statistical Reasoning by Alexander Savi is licensed under a <u>Creative Commons</u> <u>Attribution-ShareAlike 4.0 International License</u>. An <u>Open Educational Resource</u>. Approved for <u>Free Cultural Works</u>.